Patrik Arvoy
2017-07-21 09:13:45 UTC
Dear kwant users and developers,
I am trying to calculate the up and down conductance in the following
system, separately, to calculate spin polarization.
I followed some of the steps suggested in the mailing list before
(wavefuncation or current operator).
I know for this system I should get the same conductance for up and down
spins.
I first calculate the total conductance
But then
1- The wave function approach does not give the the up/down conductance
similar to total.
2- the current-operator approach gives the error
'kwant.graph.core.EdgeDoesNotExistError'.
I have attached the code in the following. If one runs the code
it plot the system with leads correctly
the first conductance plot is what one expects (if trans:)
then the second plot is incorrect (if strans1:) and then gives the error
(if strans:).
I appreciate any help
Patrik
-----------------------------------------------------------------
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial import *
from matplotlib import rcParams
from numpy import *
from numpy.linalg import *
import pickle
import sys
import os
import string
import heapq
import kwant
import tinyarray
from matplotlib import pyplot
chiral=True
if chiral:
p = pi/5 #phi
t = 0.66 #theta
a = 0.34
x = 1.4
e1 = 0
e2 = 0.3
t2=0.1
t1=-x*t2
t0 = 2
lam=-0.08
t_so1 = 0.01 #spin-orbit coupling param
t_so2 = x*t_so1 #spin-orbit coupling param
tl=tr=0.3
N = 30
sigma_0 = tinyarray.array([[1, 0], [0, 1]])
sigma_x = tinyarray.array([[0, 1], [1, 0]])
sigma_y = tinyarray.array([[0, -1j], [1j, 0]])
sigma_z = tinyarray.array([[1, 0], [0, -1]])
no=2 #number of orbitals
def sigma_v1(ap): # pauli metrix along the vertical axis
value=sigma_z*cos(t)+sin(t)*(sigma_x*sin(ap)-sigma_y*cos(ap))
return value
def sigma_v2(ap): # pauli metrix along the vertical axis
value=sigma_z*cos(t)-sin(t)*(sigma_x*sin(ap)-sigma_y*cos(ap))
return value
def family_color(sites):
return 'black' #if site.family == sites
def hopping_lw(site1, site2):
return 0.08
class Amorphous(kwant.builder.SiteFamily):
def __init__(self, coords):
self.coords = coords
super(Amorphous, self).__init__("amorphous", "",no)
def normalize_tag(self, tag):
try:
tag = int(tag[0])
except:
raise KeyError
if 0 <= tag < len(coords):
return tag
else:
raise KeyError
def pos(self, tag):
return self.coords[tag]
coords=[(0.0000000000, 0.0000000000, 0.0000000000), (-0.1336881039,
0.4114496766, 0.3400000000), (-0.4836881039, 0.6657395614, 0.6800000000),
(-0.9163118961, 0.6657395614, 1.0200000000), (-1.2663118961, 0.4114496766,
1.3600000000), (-1.4000000000, 0.0000000000, 1.7000000000), (-1.2663118961,
-0.4114496766, 2.0400000000), (-0.9163118961, -0.6657395614, 2.3800000000),
(-0.4836881039, -0.6657395614, 2.7200000000), (-0.1336881039,
-0.4114496766, 3.0600000000), (0.0000000000, -0.0000000000, 3.4000000000),
(-0.1336881039, 0.4114496766, 3.7400000000), (-0.4836881039, 0.6657395614,
4.0800000000), (-0.9163118961, 0.6657395614, 4.4200000000), (-1.2663118961,
0.4114496766, 4.7600000000), (-1.4000000000, 0.0000000000, 5.1000000000),
(-1.2663118961, -0.4114496766, 5.4400000000), (-0.9163118961,
-0.6657395614, 5.7800000000), (-0.4836881039, -0.6657395614, 6.1200000000),
(-0.1336881039, -0.4114496766, 6.4600000000), (0.0000000000, -0.0000000000,
6.8000000000), (-0.1336881039, 0.4114496766, 7.1400000000), (-0.4836881039,
0.6657395614, 7.4800000000), (-0.9163118961, 0.6657395614, 7.8200000000),
(-1.2663118961, 0.4114496766, 8.1600000000), (-1.4000000000, 0.0000000000,
8.5000000000), (-1.2663118961, -0.4114496766, 8.8400000000),
(-0.9163118961, -0.6657395614, 9.1800000000), (-0.4836881039,
-0.6657395614, 9.5200000000), (-0.1336881039, -0.4114496766, 9.8600000000),
(-1.4000000000, 0.0000000000, 0.0000000000), (-1.2663118961, -0.4114496766,
0.3400000000), (-0.9163118961, -0.6657395614, 0.6800000000),
(-0.4836881039, -0.6657395614, 1.0200000000), (-0.1336881039,
-0.4114496766, 1.3600000000), (0.0000000000, -0.0000000000, 1.7000000000),
(-0.1336881039, 0.4114496766, 2.0400000000), (-0.4836881039, 0.6657395614,
2.3800000000), (-0.9163118961, 0.6657395614, 2.7200000000), (-1.2663118961,
0.4114496766, 3.0600000000), (-1.4000000000, 0.0000000000, 3.4000000000),
(-1.2663118961, -0.4114496766, 3.7400000000), (-0.9163118961,
-0.6657395614, 4.0800000000), (-0.4836881039, -0.6657395614, 4.4200000000),
(-0.1336881039, -0.4114496766, 4.7600000000), (0.0000000000, -0.0000000000,
5.1000000000), (-0.1336881039, 0.4114496766, 5.4400000000), (-0.4836881039,
0.6657395614, 5.7800000000), (-0.9163118961, 0.6657395614, 6.1200000000),
(-1.2663118961, 0.4114496766, 6.4600000000), (-1.4000000000, 0.0000000000,
6.8000000000), (-1.2663118961, -0.4114496766, 7.1400000000),
(-0.9163118961, -0.6657395614, 7.4800000000), (-0.4836881039,
-0.6657395614, 7.8200000000), (-0.1336881039, -0.4114496766, 8.1600000000),
(0.0000000000, -0.0000000000, 8.5000000000), (-0.1336881039, 0.4114496766,
8.8400000000), (-0.4836881039, 0.6657395614, 9.1800000000), (-0.9163118961,
0.6657395614, 9.5200000000), (-1.2663118961, 0.4114496766, 9.8600000000)]
amorphous_lat = Amorphous(coords)
syst = kwant.Builder()
#adding the onsite and hopping to the system
for i in range(N):
syst[amorphous_lat(i)] = e1*sigma_0
syst[amorphous_lat(N+i)] = e2*sigma_0
syst[amorphous_lat(i), amorphous_lat(N+i)] = lam*sigma_0
if i > 0:
syst[amorphous_lat(i), amorphous_lat(i-1)] = t1*sigma_0 +
1j*t_so1*(sigma_v1(i*p)+sigma_v1((i-1)*p))
syst[amorphous_lat(N+i),amorphous_lat(N+i-1)] = t2*sigma_0 +
1j*t_so2*(sigma_v2(i*p)+sigma_v2((i-1)*p))
# If we want to attach to vertical 1D chains to the system
# we first add a site of the down lead to the scattering region
lat=kwant.lattice.cubic(a, norbs=no)
syst[lat(0, 0, -1)] = e1*sigma_0
syst[amorphous_lat(0), lat(0, 0, -1)] = tl*sigma_0
# We make a regular down lead and attach it to the system
dn_lead = kwant.Builder(kwant.TranslationalSymmetry((0, 0, -a)))
dn_lead[lat(0, 0, -2)] = e1*sigma_0
dn_lead[lat.neighbors()] = t0*sigma_0
syst.attach_lead(dn_lead)
prim_vecs=tinyarray.array([(a,0.,0.),(0.,a,0.),(0.,0.,a)])
offset=tinyarray.array((-1.2663118961, 0.4114496766,0.0))
lat2=kwant.lattice.Monatomic(prim_vecs, offset, norbs=no)
syst[lat2(0, 0, N)] = e1*sigma_0
syst[amorphous_lat(2*N-1), lat2(0, 0, N)] = tr*sigma_0
up_lead = kwant.Builder(kwant.TranslationalSymmetry((0, 0, a)))
up_lead[lat2(0, 0, N+1)] = e1*sigma_0
up_lead[lat2.neighbors()] = t0*sigma_0
syst.attach_lead(up_lead)
system=kwant.plot(syst, site_lw=0.1, site_color=family_color,
hop_lw=hopping_lw)
trans=True
if trans:
syst = syst.finalized()
energies = []
data = []
for ie in range(-320,520):
energy = ie * 0.001
smatrix = kwant.smatrix(syst, energy=energy)
energies.append(energy)
data.append(0.5*smatrix.transmission(1, 0))
fig = pyplot.figure(figsize=(6,2))
pyplot.plot(energies, data)
pyplot.xlim([-0.32,0.52])
pyplot.ylim([-0.03,1.25])
pyplot.xlabel("energy [eV]")
pyplot.ylabel("conductance [e^2/h]")
pyplot.show()
strans1=True
if strans1:
#syst = syst.finalized()
energies = []
data = []
def oscle(ene, lead_nr):
wfs=kwant.wave_function(syst, ene,
check_hermiticity=True)(lead_nr)
spin_current_z = 0
for psi in wfs:
psi_start = psi[0 : 2]
psi_end = psi[2 * 61: 2 * 61 + 2]
#spin_current_z += -2 *
imag(psi_end.conjugate().dot(sigma_z).dot(psi_start))
spin_current_z +=
abs(imag(psi_end.conjugate().dot(sigma_z).dot(psi_start)))
return spin_current_z
for ie in range(-320,520):
energy = ie * 0.001
energies.append(energy)
data.append(oscle(ene=energy, lead_nr=1))
fig = pyplot.figure(figsize=(6,2))
pyplot.plot(energies, data)
pyplot.show()
strans=True
if strans:
#syst = syst.finalized()
J_spin = kwant.operator.Current(syst, sigma_z,
where=[(amorphous_lat(0), amorphous_lat(N-2))], sum=True)
all_wfs = kwant.wave_function(syst, energy=0.25)(1)
spin_current_list = sum(J_spin(wf) for wf in all_wfs)
print(spin_current_list)
I am trying to calculate the up and down conductance in the following
system, separately, to calculate spin polarization.
I followed some of the steps suggested in the mailing list before
(wavefuncation or current operator).
I know for this system I should get the same conductance for up and down
spins.
I first calculate the total conductance
But then
1- The wave function approach does not give the the up/down conductance
similar to total.
2- the current-operator approach gives the error
'kwant.graph.core.EdgeDoesNotExistError'.
I have attached the code in the following. If one runs the code
it plot the system with leads correctly
the first conductance plot is what one expects (if trans:)
then the second plot is incorrect (if strans1:) and then gives the error
(if strans:).
I appreciate any help
Patrik
-----------------------------------------------------------------
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial import *
from matplotlib import rcParams
from numpy import *
from numpy.linalg import *
import pickle
import sys
import os
import string
import heapq
import kwant
import tinyarray
from matplotlib import pyplot
chiral=True
if chiral:
p = pi/5 #phi
t = 0.66 #theta
a = 0.34
x = 1.4
e1 = 0
e2 = 0.3
t2=0.1
t1=-x*t2
t0 = 2
lam=-0.08
t_so1 = 0.01 #spin-orbit coupling param
t_so2 = x*t_so1 #spin-orbit coupling param
tl=tr=0.3
N = 30
sigma_0 = tinyarray.array([[1, 0], [0, 1]])
sigma_x = tinyarray.array([[0, 1], [1, 0]])
sigma_y = tinyarray.array([[0, -1j], [1j, 0]])
sigma_z = tinyarray.array([[1, 0], [0, -1]])
no=2 #number of orbitals
def sigma_v1(ap): # pauli metrix along the vertical axis
value=sigma_z*cos(t)+sin(t)*(sigma_x*sin(ap)-sigma_y*cos(ap))
return value
def sigma_v2(ap): # pauli metrix along the vertical axis
value=sigma_z*cos(t)-sin(t)*(sigma_x*sin(ap)-sigma_y*cos(ap))
return value
def family_color(sites):
return 'black' #if site.family == sites
def hopping_lw(site1, site2):
return 0.08
class Amorphous(kwant.builder.SiteFamily):
def __init__(self, coords):
self.coords = coords
super(Amorphous, self).__init__("amorphous", "",no)
def normalize_tag(self, tag):
try:
tag = int(tag[0])
except:
raise KeyError
if 0 <= tag < len(coords):
return tag
else:
raise KeyError
def pos(self, tag):
return self.coords[tag]
coords=[(0.0000000000, 0.0000000000, 0.0000000000), (-0.1336881039,
0.4114496766, 0.3400000000), (-0.4836881039, 0.6657395614, 0.6800000000),
(-0.9163118961, 0.6657395614, 1.0200000000), (-1.2663118961, 0.4114496766,
1.3600000000), (-1.4000000000, 0.0000000000, 1.7000000000), (-1.2663118961,
-0.4114496766, 2.0400000000), (-0.9163118961, -0.6657395614, 2.3800000000),
(-0.4836881039, -0.6657395614, 2.7200000000), (-0.1336881039,
-0.4114496766, 3.0600000000), (0.0000000000, -0.0000000000, 3.4000000000),
(-0.1336881039, 0.4114496766, 3.7400000000), (-0.4836881039, 0.6657395614,
4.0800000000), (-0.9163118961, 0.6657395614, 4.4200000000), (-1.2663118961,
0.4114496766, 4.7600000000), (-1.4000000000, 0.0000000000, 5.1000000000),
(-1.2663118961, -0.4114496766, 5.4400000000), (-0.9163118961,
-0.6657395614, 5.7800000000), (-0.4836881039, -0.6657395614, 6.1200000000),
(-0.1336881039, -0.4114496766, 6.4600000000), (0.0000000000, -0.0000000000,
6.8000000000), (-0.1336881039, 0.4114496766, 7.1400000000), (-0.4836881039,
0.6657395614, 7.4800000000), (-0.9163118961, 0.6657395614, 7.8200000000),
(-1.2663118961, 0.4114496766, 8.1600000000), (-1.4000000000, 0.0000000000,
8.5000000000), (-1.2663118961, -0.4114496766, 8.8400000000),
(-0.9163118961, -0.6657395614, 9.1800000000), (-0.4836881039,
-0.6657395614, 9.5200000000), (-0.1336881039, -0.4114496766, 9.8600000000),
(-1.4000000000, 0.0000000000, 0.0000000000), (-1.2663118961, -0.4114496766,
0.3400000000), (-0.9163118961, -0.6657395614, 0.6800000000),
(-0.4836881039, -0.6657395614, 1.0200000000), (-0.1336881039,
-0.4114496766, 1.3600000000), (0.0000000000, -0.0000000000, 1.7000000000),
(-0.1336881039, 0.4114496766, 2.0400000000), (-0.4836881039, 0.6657395614,
2.3800000000), (-0.9163118961, 0.6657395614, 2.7200000000), (-1.2663118961,
0.4114496766, 3.0600000000), (-1.4000000000, 0.0000000000, 3.4000000000),
(-1.2663118961, -0.4114496766, 3.7400000000), (-0.9163118961,
-0.6657395614, 4.0800000000), (-0.4836881039, -0.6657395614, 4.4200000000),
(-0.1336881039, -0.4114496766, 4.7600000000), (0.0000000000, -0.0000000000,
5.1000000000), (-0.1336881039, 0.4114496766, 5.4400000000), (-0.4836881039,
0.6657395614, 5.7800000000), (-0.9163118961, 0.6657395614, 6.1200000000),
(-1.2663118961, 0.4114496766, 6.4600000000), (-1.4000000000, 0.0000000000,
6.8000000000), (-1.2663118961, -0.4114496766, 7.1400000000),
(-0.9163118961, -0.6657395614, 7.4800000000), (-0.4836881039,
-0.6657395614, 7.8200000000), (-0.1336881039, -0.4114496766, 8.1600000000),
(0.0000000000, -0.0000000000, 8.5000000000), (-0.1336881039, 0.4114496766,
8.8400000000), (-0.4836881039, 0.6657395614, 9.1800000000), (-0.9163118961,
0.6657395614, 9.5200000000), (-1.2663118961, 0.4114496766, 9.8600000000)]
amorphous_lat = Amorphous(coords)
syst = kwant.Builder()
#adding the onsite and hopping to the system
for i in range(N):
syst[amorphous_lat(i)] = e1*sigma_0
syst[amorphous_lat(N+i)] = e2*sigma_0
syst[amorphous_lat(i), amorphous_lat(N+i)] = lam*sigma_0
if i > 0:
syst[amorphous_lat(i), amorphous_lat(i-1)] = t1*sigma_0 +
1j*t_so1*(sigma_v1(i*p)+sigma_v1((i-1)*p))
syst[amorphous_lat(N+i),amorphous_lat(N+i-1)] = t2*sigma_0 +
1j*t_so2*(sigma_v2(i*p)+sigma_v2((i-1)*p))
# If we want to attach to vertical 1D chains to the system
# we first add a site of the down lead to the scattering region
lat=kwant.lattice.cubic(a, norbs=no)
syst[lat(0, 0, -1)] = e1*sigma_0
syst[amorphous_lat(0), lat(0, 0, -1)] = tl*sigma_0
# We make a regular down lead and attach it to the system
dn_lead = kwant.Builder(kwant.TranslationalSymmetry((0, 0, -a)))
dn_lead[lat(0, 0, -2)] = e1*sigma_0
dn_lead[lat.neighbors()] = t0*sigma_0
syst.attach_lead(dn_lead)
prim_vecs=tinyarray.array([(a,0.,0.),(0.,a,0.),(0.,0.,a)])
offset=tinyarray.array((-1.2663118961, 0.4114496766,0.0))
lat2=kwant.lattice.Monatomic(prim_vecs, offset, norbs=no)
syst[lat2(0, 0, N)] = e1*sigma_0
syst[amorphous_lat(2*N-1), lat2(0, 0, N)] = tr*sigma_0
up_lead = kwant.Builder(kwant.TranslationalSymmetry((0, 0, a)))
up_lead[lat2(0, 0, N+1)] = e1*sigma_0
up_lead[lat2.neighbors()] = t0*sigma_0
syst.attach_lead(up_lead)
system=kwant.plot(syst, site_lw=0.1, site_color=family_color,
hop_lw=hopping_lw)
trans=True
if trans:
syst = syst.finalized()
energies = []
data = []
for ie in range(-320,520):
energy = ie * 0.001
smatrix = kwant.smatrix(syst, energy=energy)
energies.append(energy)
data.append(0.5*smatrix.transmission(1, 0))
fig = pyplot.figure(figsize=(6,2))
pyplot.plot(energies, data)
pyplot.xlim([-0.32,0.52])
pyplot.ylim([-0.03,1.25])
pyplot.xlabel("energy [eV]")
pyplot.ylabel("conductance [e^2/h]")
pyplot.show()
strans1=True
if strans1:
#syst = syst.finalized()
energies = []
data = []
def oscle(ene, lead_nr):
wfs=kwant.wave_function(syst, ene,
check_hermiticity=True)(lead_nr)
spin_current_z = 0
for psi in wfs:
psi_start = psi[0 : 2]
psi_end = psi[2 * 61: 2 * 61 + 2]
#spin_current_z += -2 *
imag(psi_end.conjugate().dot(sigma_z).dot(psi_start))
spin_current_z +=
abs(imag(psi_end.conjugate().dot(sigma_z).dot(psi_start)))
return spin_current_z
for ie in range(-320,520):
energy = ie * 0.001
energies.append(energy)
data.append(oscle(ene=energy, lead_nr=1))
fig = pyplot.figure(figsize=(6,2))
pyplot.plot(energies, data)
pyplot.show()
strans=True
if strans:
#syst = syst.finalized()
J_spin = kwant.operator.Current(syst, sigma_z,
where=[(amorphous_lat(0), amorphous_lat(N-2))], sum=True)
all_wfs = kwant.wave_function(syst, energy=0.25)(1)
spin_current_list = sum(J_spin(wf) for wf in all_wfs)
print(spin_current_list)